Posts

I have read a lot of stuff on movement screens recently and specific "functional tests" such as overhead squats and single leg squats. People both extolling their virtues and others maybe less sure about their validity.

I thought I might chime in with my thoughts on these "screens".  Firstly part of the problem is we are trying to shoe horn function into a handful of assessments. Given the incalculable number of functions this is a pretty tall order. Another problem is that we are trying to 'define' Peoples function. This has always been the problem with 'functional' training, trainers tend to define the clients function rather than the other way round. A more successful approach, although less easy, is to have a thought process that allows us to understand the biomechanics behind someones function and be able to design a test to tell us how well someone interacts with their functional activity. At Cor-kinetic this forms a cornerstone or principle of how we approach the body and teach people to approach the body.

So are you testing the test? Or are you testing someones functional needs? That is a question you have to ask yourself! If the test has nothing to do with the needs of the client or player then what validity does the answer have? We are simply testing a test.

All movement is a specific skill. Many sporting movements are very specific skills honed over a number of years. Is a poor test on a movement we have not practiced just poor skill at the movement as we have spent no time refining it? Are the improvements in the movement skill based? If so then would it not be better to spend the time practicing a skill that we really need for our sport? These are all questions we need to ask.

As movement patterns live in the brain and we have between 100-120 billion neurons each with around 10,000 connections each I am pretty sure we have the neural real estate to hold more than a handful of movements that define how we function.

Does a tennis look like rugby? If not then we need to find a way to screen them specifically.

The single leg squat test does go a little way to incorporating a functional thought process. The fact that a person during gait spends between 50-85% on a single leg depending who you listen too has a sprinkling of specificity. I think more towards the first figure for walking and more towards the second figure for running! However the amount we squat during walking gait would be minimal.

This is the inverse pendulum model of human walking gait, this means we are able to be efficient and use gravity to transfer our COM (centre of mass). This is in opposition to the spring mass model of running. The aim of walking gait is to not overly squat and lower our COM. (Farley 1998)

So a single leg squat maybe more 'functional' for running but not walking gait. Although the depth of the squat may still not be large. We can see the variation in function here and a single test to define our 'functionality' may be of limited value. A much more valid process may be to understand the variation in function of the client stood before me.

The major factor in both functions (walking and running) is being able to effectively move our COM. The ability to translate as well as rotate is a massive component of human movement. Nearly all 'functional' tests seem to assess our ability to move in the vertical component of the sagittal plane rather than the horizontal which is at least as important if we ever want to get any where. The art of transferring and controlling our COM dynamically should be a principle part of any 'functional' testing screen or protocol.

This is something that the S/L squat does not tell us but is one of the most important 'functional' tests we can have. Also would a more effective adaptation to a S/L test to find out how our pelvis is able to rotate over our femur creating relative IR at the hip whilst in a S/L stance?? This would be more 'functional' for both walking and running. The stability we crave in a S/L stance maybe generated through eccentric tension of the numerous external rotators and adductors (many of which are lengthen in IR)! Without the pelvic rotation this stability could be compromised, so testing stability without pelvic rotation on a S/L for gait maybe a bit like a driving test with 3 wheels!!! Function is specific and if we want to be 'functional' we must learn to be more specific also.

An overhead squat test is another 'functional' test and very rarely in functional activity do we do things bilaterally or over head for that matter!

If we go back to the pretty universal function of gait, we can see that the two arms are doing different things. One is flexing, one extending. One externally rotating, one internally. This means that the scapulae will also be doing different things. elevating and depressing, retracting and protracting. In fact any function which involves rotation (pretty much all of them!) this will be occurring at the glenohumeral and scapulothoracic joints. Can a test that fails to take any of this into account be reliable for predicting any movement pattern dysfunction in the body away from a single plane overhead squat?? In everyday function we rarely squat from a contrived position defined by someone else. Squat down to do the gardening or get something from the fridge I guarantee it will not be in the pelvic neutral, toe out and linear fashion we do in the gym. To assess and train like this and define it as 'functional' may not be accurate in both thought process and application. The variation in foot position, and therefore hip position, in all three planes in functional squatting is huge. Dysfunction or pain could be occur away from this one contrived position and a thought process that allows us to test a wider variety of positions in a movement may give us more information.

Lastly muscular range in one plane of motion may be naturally mitigated when three-dimensional tensile or compressive force is acting on the fibres. Simply a structure may not be able gain as much length in one plane when also being pulled in another direction or plane. So a test that only tests a single plane at a time may also give information not consistent with three-dimensional functional muscle movement. This is similar to single plane force production (isolated) not being applicable in a three dimension environment where force has to balance across three planes.

As always this is my opinion on a complicated subject that has no definitive answer, only more questions!!!

So I have not blogged for a while. It feels like I have been here, there and everywhere teaching in November. From New York to the Manz fitness conference in Portugal and more locally in the UK.

In this blog I want to look at a more functional approach to the concept of strength or maybe more importantly force production during function. One way of defining strength, as always there will be different definitions, would be the ability to move an external resistance or generate force to overcome a load (and its inertia if we are being consistent with Newton) . Generally in the gym this would be a weight.

Now with a weight it is very easy to quantify the fact we are moving a larger external resistance or mass. In fact it usually says it on the side in a numerical form. The question we have to ask is does this make us better at force production within our function (if that is what we want of course)??

Lets go back to our good friend Newton. His second law of acceleration defines force production or F=MA. This is force = Mass and Acceleration. This equation tells us that force can be produced in two distinct ways, M over A or A over M. As we tend not to walk around with Newton meters to measure force it is much easier to just quantify the mass element of this equation. So we look at M (mass) over A (acceleration) as a simple way of measuring our ability to produce force. The question is are most sports high external resistance and therefore M over A or lower external resistance and more A over M. This is a harder question to determine but if we look at a couple of sports this might give us an answer. Sports such as tennis and football (soccer) would have a lower external resistance and rely much more on changes in velocity to generate force or A over M. This would also be true of throwing a punch or ball. In these circumstances would ability to move large masses help us??

If we look at the Hill curve (1953), which is the hyperbolic force-velocity curve, this implies that velocity of muscular contraction is inversely proportionate to load. We can see that large muscular force cannot be exerted in rapid movements, as we would see in weight lifting, that would be associated with changes in velocity or A over M to generate force .

So do we need to be strong to be good at our sport?? One perspective is that the greater someones strength (M over A) or hypertrophy and physique the better. Although I think this is often not the case in the sporting arena as we see amazing performances by people on a regular basis who do not fit this bill. It maybe that within a more functional context a sub classification of speed strength maybe more applicable. We would define this as the ability to execute a movement against a small resistance with a high velocity.

Speed and intensity of movement will recruit the fast twitch muscle fibres associated with maximal effort. These fibres are recruited as per force needed. As previously highlighted this force can increase A over M as much as M over A! So do we need to be specific in the way we recruit these FT fibres if we can recruit them also M over A? Moffroid & Whipple (1970) found that there was little transfer effect from low velocity training to high velocity training, couple this with the Hill curve data that force decreases with the velocity of contraction, it would appear that specificity plays a role in increasing applicable force.

So we need to specific in the way we produce force. So then what about the position this force is produced from in terms of movement or motor pattern? By using set classic gym based strength exercises for strength in a wide variety of sports, this would indicate strength is perceived as generic in terms of position rather than specific. However research does not support this assumption. Verkhoshansky (1968) sees the kinesiological pattern as important in special strength training and the patterns of force production depending on a specific neuromuscular process. Sale and MacDougall (1981) also see "Increased performance is primarily a result of neuromuscular skill". They also comment "increased strength is apparent only when measured against the same types of movements used in training". This all seems to point to the fact that specific function related movement patterns and their mastery is important in increasing our force production and performance. Bompa (2000) says “Strength adaptations are angle specific and thus all possible angles must be utilized". Lifters have known this for a long time as they often change angles through inclines and declines, however they rarely use planes other than the sagittal. Different angles, as well as interactions with different planes of movement, occur in different functions and sports. This means that function related angles, planes and movement patterns could be important in increasing force production and strength in a classic sense if required.

We also cannot replicate maximal forces produced in a single plane of movement during non function related fixed positions when in dynamic upright function.  Force would have to balanced across all 3 planes of motion (as function is three dimensional) and also relate to three dimensional external forces acting on the body. This would also diminish applicability of non specific strength training to functional performance.

The body has found a unique way of controlling and harnessing external force for force production and energy and information efficiency. This would be the load to explode of eccentric before concentric muscular actions involved in the stretch shorten cycle. The vast majority of functions use this process from hitting or throwing a ball to standing up from a chair (we flex forward before extending). This action of creating tensile force on the muscle elicits the myotatic reflex for neurological muscular activation vital in functional force production and also storage and recoil of kinetic energy from the more passive myofascial structures such as tendons. We know that energy conservation is vital to prolonged force production involved in sporting endurance. As energy decreases so does skill and likely hood of injury.

As always this is purely my personal opinion on the concept of strength. It is a different view from the traditional paradigm and may not be shared by strength purists. However differing opinions are vital to understanding the complexities of the human body we all love and cherish!

Ben Cormack

 

I have read a few blogs recently on fascia. All of them giving a different perspective on what is a very prevalent topic at the moment.

One was based around the significance of fascial contraction and the biomechanical influence it could exert on the body. This made me think of the a pair of articles and an audio presentation I wrote for PTontheNet. In these articles I posed the question "how would fascia contract".

As far as I am aware fascia seems to mainly afferent, sending information to the CNS, rather than being able to efferently regulate tension through the feedback loop of muscle spindles and motor units. So if fascia does actively contract then why and is an active biomechanical influence helpful??

Chemical contraction has been noted in vitro (out of the body) in rat fascia (schliep 2006). These changes in response to chemical factors were in this case due to calcium chloride, calcium being involved in both skeletal and smooth muscle contraction although in different ways.

I think the link between the biochemical and biomechanical is an important one. Stress creates significant biochemical changes in the body. Hormones associated with stress such as cortisol are also involved in energy regulation. The body in response to long term stressors and increased energy expenditure may choose to decrease movement to conserve energy. This could be looked at as another way of interpreting the law of energy conservation on a metabolic level!!

One way of decreasing movement could be to increase the stiffness of the body. Fascia in its various forms being ubiquitous in the body could certainly play a role in this longer term stiffness regulation that would require less instantaneous neurological control than involved in active muscle contraction.

Now this maybe good for the body on one level (energy), maybe not so good on another (movement). So the biomechanical impact of stiffness regulation for fascia may be detrimental for our movement, especially if it becomes a learned response of the body and becomes the 'default' tension even when under less stress as I believe can happen.

Some may argue that increased compression through contraction of fascia at the lumbar spine is helpful. However this may not be the case if the movement at our hips is also reduced. The ball and socket joint of the hip is designed to have a large movement potential especially in the transverse plane. If this motion is reduced, through fascial stiffness, more motion may have to come from the lumbar area to achieve function related movement. Lumbar rotation is limited (by facet orientation) to 5 degrees collectively  in all the 5 vertebrae!!

This could be a recipe for increased articular surface compression if the superior segment rotation (driven by top down movement) is not in close sequence with inferior segment rotation. If both rotate similar amounts then less compression. If one is blocked then this will increase compressive force between the two segments. If we put our hands one in front of the other and rotate them together we feel less compression. Try moving one and keeping the other still, this will increase compression.  If the pelvis is not able to rotate on the femur then the inferior lumbar segment closest to the hip will be blocked. This will lead to increased compressive forces and possibly also to pain!

It does however give an insight into why some people have chronic movement dysfunctions that cannot be treated by biomechanical intervention alone without looking at biochemical, nutritional or emotional factors.

I also think we overlook the passive role that fascial stiffness plays in the body. Is passive resistance to movement as important as active contraction?? I personally think so. Our passive stiffness controls the range, speed and energy consumption of our movement. This seems to be overlooked in a similar way to eccentric muscle contraction controlling our movement by decelerating our momentum and controlling forces.

The differing types of collagen contained in different fascia may give slightly different interactions with energy. Some stiffer varieties maybe able to store and return energy whilst others may exert their stiff properties before plastically deforming and having their shape reset by muscle force.

This model would be quicker and more energy efficient than active contraction, neurological or chemical. The force of the movement (hopefully) dictating the correct response of the tissue.

As always this is merely my simple opinion on a complex clinical subject. I have also tried to give a perspective using a functional movement context.

Ben!!

Its been a while since I last wrote so I thought I better had! Today's blog is about dynamic stretching.

To stretch or not to stretch, dynamic or static, these are all questions posed in the fitness industry. Another question is does stretching reduce injury?? This is not a question that I want to get into but instead look at stretching as improving our exercise experience and performance. For me, if we want to increase movement we do this by, increasing movement.

First of all I think we see stretching as a mechanical experience that increase tissue length. To some degree this is true. However I also see dynamic stretching as a neurological experience that increases information flow around the body. So many of the bodies receptors that live in the skin, fascia, joint capsules and muscles respond to change. This would be change in angle, length, tension, pressure and vibration to name a few. Dynamic movement creates constant change, a static change of position only creates one change!

By increasing the movement sphere and therefore information sphere we increase the potential for more movement. As movement increases, so does the ability to increase the range or sphere. A good friend of mine coined the phrase "movement begets movement" I think this is pretty good way of summing this up! So by remaining static we will not increase this sphere or give the body the potential to increase the sphere.

If we look at the information mechanisms in the body and were to look solely at muscles for this information the muscle spindles would be a great place to start. The spindles have two types of Efferent (info towards the brain). One is based on tissue length and one is based on the rate of change of this length. These intrafusal fibres are vital for the feedback loop, through the gamma and alpha motor neurons, that then regulates the stiffness (resistance to lengthening) of the extrafusal muscle fibres and hence successful movement.

By statically lengthening the muscles we are only giving half of the picture. Movement requires both length and rate of change of length information to be successful. Imagine having the GPS system of your car only relay half the information, and the bit omitted was the speed you were traveling at. I think you would be missing a lot of turns!!!

We also tend to only stretch along the fibre direction or longitudinal axis of the muscle. If we look at the mechanical nature of the spindles then this would lengthen and put the spindles under tension but also imagine that when under longitudinal tension adding in perpendicular and rotational tension. This would affect the information flow also. This demonstrates from a muscular perspective why three dimensionality and movement are pretty vital to the stretching or movement enhancing process. Especially as functional movement uses all three planes!

Also we must see stretching as an integrated procedure. In an integrated system such as the body the range of one joint maybe inhibited by the range available to another. If we stretch the joints separate of their function specific chain we may get a different ranges to if they are integrated. In fact a smaller individual range but a larger integrated movement may be the best desired outcome for some joints to avoid tissue stress.

Many factors may also affect the flexibility of the body. These could be stress, diet, disease and eyesight to name a few. If we can understand the feed forward  mechanism of the gamma motor neuron upregulating the stiffness of the spindles and therefore the alpha motor neuron changing the stiffness of muscle fibres, it is easier to see why the above stressors of the system can have such a huge impact on flexibility and therefore the biomechanics of the body!!

I have never understood how remaining still will help us move!!!

This blog comes courtesy of a conversation I had with my good friend Mike. Its all about optimum range of a muscle. It kind of followed on from this piece of info…

The eccentrically-loaded muscle will start its contraction weak and then get stronger; the concentrically-loaded muscle will initiate strong, but get weaker as the contraction continues.

 I had never given this much thought before but this makes a lot of sense when we think of length tension relationships. A muscle will struggle to produce force when both too long and too short.  Being weak in both positions. Cross bridge attachment has an optimal range.  This will be true of both force production and conservation of energy. Too much cross bridge detachment will also cause a more thermodynamically expensive scenario as we split ATP and dissipate energy as heat.

Elastic energy will also I believe have an optimal range. Studies have shown that spring stiffness (ability to return energy) comes from optimal joint angles or ranges. Going beyond this range means that we dampen or absorb energy, again dissipating as heat through visceoelasticity of tissue. Different tissues have varying levels of stiffness and compliance, different ranges will bring into play these different characteristics as will our neurological intention (land or jump again) to move control stiffness through efferent spindle stiffness regulation.

If we look at the way we jump when we want to jump again, we can see that we use a shorter joint range than when we land for the final time.  When we finish we have a large bend of the knee to absorb ground reaction forces rather than reuse them. This has implications for our understanding of height, range and repetition programming for our training me thinks!!

Ecconcentric (both eccentric and concentric muscle contractions occurring in different planes) muscle action may also play a role in optimal cross bridge attachment. If a muscle was to lengthen in all three planes this may cause a scenario where we are going beyond the optimal range for the muscle in terms of force production and elastic energy recoil. By mitigating elongation of the tissue in a plane of motion through concentric shortening we may also keep an optimal range. It maybe this would happen in a more sub maximal scenario where energy return and energy conservation are more important than maximal force production. I feel that gait is a great example of this. Although maximal force production may also be mitigated by creating too much loading through joint range that is hard to transform.

This then got me thinking about how we train. Many times we are looking for maximal ranges in our training. Maybe we should be looking more at optimal ranges. This may have more implications for sports where we can control the range through skill however. Running is a great example. Controlling stride length will keep us within optimal joint ranges. We must also remember that optimal will be governed by the individual. This will be affected by tissue ability, limb length, speed ability and event. I expect it will be that different events within running e.g. 400 metres will need different joint ranges from a marathon as we balance need for all out power, power-endurance and endurance. Going beyond optimal means our ability to start the next phase of movement, either eccentric to concentric or vice versa, will be compromised. I think that deceleration and acceleration are part of running (unlike the pose method ideology!) However we can mitigate excessive amounts of both having to occur, increasing energy conservation.

If we look at a game of tennis it is much easier to hit a powerful shot when we can manoeuvre our bodies into position. When we are out of position our range of movement may have to be extended to reach the ball. The transformation from eccentric to concentric is sub optimal and affects the power of the shot. The tennis player many times at end range will hit a defensive shot back, aiming to get it in the court rather than a winner! Increases in amortisation from eccentric to concentric reduces cross bridge attachment also decreasing energy return. The closer we get to and stay at end range stretching for the ball the longer we have the amortisation phase reducing the energy gained in the loading motion.

This is a very theoretical piece and mainly my own thoughts (so blame me!!) but it may give us food for thought when we programme ranges/heights for our clients to move through when training.

More may not be better in all circumstances!!!