Posts

Its been a while since I last wrote so I thought I better had! Today's blog is about dynamic stretching.

To stretch or not to stretch, dynamic or static, these are all questions posed in the fitness industry. Another question is does stretching reduce injury?? This is not a question that I want to get into but instead look at stretching as improving our exercise experience and performance. For me, if we want to increase movement we do this by, increasing movement.

First of all I think we see stretching as a mechanical experience that increase tissue length. To some degree this is true. However I also see dynamic stretching as a neurological experience that increases information flow around the body. So many of the bodies receptors that live in the skin, fascia, joint capsules and muscles respond to change. This would be change in angle, length, tension, pressure and vibration to name a few. Dynamic movement creates constant change, a static change of position only creates one change!

By increasing the movement sphere and therefore information sphere we increase the potential for more movement. As movement increases, so does the ability to increase the range or sphere. A good friend of mine coined the phrase "movement begets movement" I think this is pretty good way of summing this up! So by remaining static we will not increase this sphere or give the body the potential to increase the sphere.

If we look at the information mechanisms in the body and were to look solely at muscles for this information the muscle spindles would be a great place to start. The spindles have two types of Efferent (info towards the brain). One is based on tissue length and one is based on the rate of change of this length. These intrafusal fibres are vital for the feedback loop, through the gamma and alpha motor neurons, that then regulates the stiffness (resistance to lengthening) of the extrafusal muscle fibres and hence successful movement.

By statically lengthening the muscles we are only giving half of the picture. Movement requires both length and rate of change of length information to be successful. Imagine having the GPS system of your car only relay half the information, and the bit omitted was the speed you were traveling at. I think you would be missing a lot of turns!!!

We also tend to only stretch along the fibre direction or longitudinal axis of the muscle. If we look at the mechanical nature of the spindles then this would lengthen and put the spindles under tension but also imagine that when under longitudinal tension adding in perpendicular and rotational tension. This would affect the information flow also. This demonstrates from a muscular perspective why three dimensionality and movement are pretty vital to the stretching or movement enhancing process. Especially as functional movement uses all three planes!

Also we must see stretching as an integrated procedure. In an integrated system such as the body the range of one joint maybe inhibited by the range available to another. If we stretch the joints separate of their function specific chain we may get a different ranges to if they are integrated. In fact a smaller individual range but a larger integrated movement may be the best desired outcome for some joints to avoid tissue stress.

Many factors may also affect the flexibility of the body. These could be stress, diet, disease and eyesight to name a few. If we can understand the feed forward  mechanism of the gamma motor neuron upregulating the stiffness of the spindles and therefore the alpha motor neuron changing the stiffness of muscle fibres, it is easier to see why the above stressors of the system can have such a huge impact on flexibility and therefore the biomechanics of the body!!

I have never understood how remaining still will help us move!!!

If you have ever looked at the biomechanics of the backswing in golf it becomes obvious that being ‘on plane’ is a perfect functional combination of the three planes of movement available to the body, sagittal, transverse and frontal. My recent foray into the world of video analysis with golf has inspired my post!!

This also kind of ties in with my friend Dave Westerman’s recent video explanation of biomechanics involved during the golf backswing.

When we may start to see problems is when the body does not have the capacity to move in the plane required. A strategy we may see is the body obtaining more movement in the plane it can get to compensate for movement in the plane that it can’t get.

The required motions in the backswing at the hip are extension (in a flexed position), ADDuction and internal rotation. The aim in the backswing is to not shift the Centre of mass to far to the right for a right handed golfer. The larger shift in mass and translation of the pelvis comes during ball striking and follow through. This acceleration of mass creates the force required to propel the ball.

A common swing fault can occur when instead of using the transverse plane to create relative internal rotation at the hip, we instead utilize frontal plane translation. This pushes our centre of mass over to the right for a right handed golfer.

What we now see is an inability to sequence correct motions in the swing. The shift in weight cannot be reversed in time so that the hips can create a proximal acceleration to provide additional load to the core, chest and shoulder. By the time the hands have started the down swing the hips are still lagging behind, unable to cover the range in the timeframe available. This frontal plane translation could also compensate for the ability to get opposite side lateral flexion. The shift in mass through hip motion creating more or the illusion of more lateral flexion.

This change in sequence can lead to inefficient and ineffective swing mechanics and also to injury to the tissue that relies on this correct sequencing. The lack of mass in the F=MA equation will also severely reduce power.

This is very similar to what happens during overpronation at the foot. The large motion and increased range into pronation means that the body is unable to reverse this motion into supination by the time the swing phase of gait is initiated. This leads to a back foot pronation and reduced movement in the rest of the kinetic chain.

As with all sport golf, relies on the sequencing of movements to accelerate our mass at the correct time.  Our ability to understand our client’s function and our clients ability to perform their function is vital to our success.

Check out Cor-Kinetic facebook.com/corkinetic for loads more functional info and course dates.

This post is on moving our COM (centre of mass) during training and assessment.

During sport and many functional activities such as walking we are constantly moving our COM. Walking is about controlling the change in position of our COM that comes about from the bodies momentum carrying it forward once it gets moving! Try and throw a ball without shifting you COM from the back to the front. The same is true of throwing a punch or hitting a tennis shot. By transferring our COM we are putting the M (mass) in F=MA, Newtons second law of motion that deals with acceleration and ultimately force production. The more mass we can accelerate the more force we can produce. If we threw with just our arm that mass would be small. By moving our entire COM that mass becomes much larger and so does the force we can generate.

The question is do we use transfer of COM in our training and assessment??? A step beyond that is do we displace our mass in the horizontal e.g forward and back, rather than just in the vertical e.g up and down.

How many traditional gym exercises move COM. Well quite a few. Deadlifts and squats both do in the vertical (up and down). How many in the horizontal (forward and back) erm....not so many!! How many of the movements discussed above use forward and back COM transfer for power...all!!! So when we are training for sport really we should be looking to train COM movement away from just the vertical. Does that mean the clean and press is not going to help us punch harder or throw better??, I think that's exactly what it means! We have to examine the functional crossover of our exercises rather than just apply gym based exercises to any sport or function feeling they will have crossover to generic 'strength'

What is described as timing in sport such as when we hit a great shot in cricket or tennis is being able to move our COM at the perfect time in the right direction to impart the most force on the ball!!

Many times during assessment our clients will be able to translate their COM forward effectively on one side but use rotation on the opposite side as they are unable to decelerate the COM transfer in the hip or ankle joint. It is much easier to rotate in the sagittal plane into flexion using gravity and keep the COM central rather than moving the COM forward through translation. A simple test is to see whether a client can lunge forward effectively in the horizontal vector without sinking downwards towards the floor. This would show effective transfer of COM. If we do not look to move COM in assessment we cannot tell if the joints and muscles in question can decelerate our mass and resultant momentum vital to functional success.This deceleration will lead to effective acceleration as we eccentrically load the muscle for concentric force production.

In fact effective horizontal translation in the sagittal plane will increase motion in the transverse plane at the hips and therefore the feet and spine too!

Using 3 dimensional space will force our bodies to shift COM, decelerate and harness momentum for force production. Most traditional exercises keep us rooted to the floor!!

Think outside the box for functional success!!!

This blog comes courtesy of a conversation I had with my good friend Mike. Its all about optimum range of a muscle. It kind of followed on from this piece of info…

The eccentrically-loaded muscle will start its contraction weak and then get stronger; the concentrically-loaded muscle will initiate strong, but get weaker as the contraction continues.

 I had never given this much thought before but this makes a lot of sense when we think of length tension relationships. A muscle will struggle to produce force when both too long and too short.  Being weak in both positions. Cross bridge attachment has an optimal range.  This will be true of both force production and conservation of energy. Too much cross bridge detachment will also cause a more thermodynamically expensive scenario as we split ATP and dissipate energy as heat.

Elastic energy will also I believe have an optimal range. Studies have shown that spring stiffness (ability to return energy) comes from optimal joint angles or ranges. Going beyond this range means that we dampen or absorb energy, again dissipating as heat through visceoelasticity of tissue. Different tissues have varying levels of stiffness and compliance, different ranges will bring into play these different characteristics as will our neurological intention (land or jump again) to move control stiffness through efferent spindle stiffness regulation.

If we look at the way we jump when we want to jump again, we can see that we use a shorter joint range than when we land for the final time.  When we finish we have a large bend of the knee to absorb ground reaction forces rather than reuse them. This has implications for our understanding of height, range and repetition programming for our training me thinks!!

Ecconcentric (both eccentric and concentric muscle contractions occurring in different planes) muscle action may also play a role in optimal cross bridge attachment. If a muscle was to lengthen in all three planes this may cause a scenario where we are going beyond the optimal range for the muscle in terms of force production and elastic energy recoil. By mitigating elongation of the tissue in a plane of motion through concentric shortening we may also keep an optimal range. It maybe this would happen in a more sub maximal scenario where energy return and energy conservation are more important than maximal force production. I feel that gait is a great example of this. Although maximal force production may also be mitigated by creating too much loading through joint range that is hard to transform.

This then got me thinking about how we train. Many times we are looking for maximal ranges in our training. Maybe we should be looking more at optimal ranges. This may have more implications for sports where we can control the range through skill however. Running is a great example. Controlling stride length will keep us within optimal joint ranges. We must also remember that optimal will be governed by the individual. This will be affected by tissue ability, limb length, speed ability and event. I expect it will be that different events within running e.g. 400 metres will need different joint ranges from a marathon as we balance need for all out power, power-endurance and endurance. Going beyond optimal means our ability to start the next phase of movement, either eccentric to concentric or vice versa, will be compromised. I think that deceleration and acceleration are part of running (unlike the pose method ideology!) However we can mitigate excessive amounts of both having to occur, increasing energy conservation.

If we look at a game of tennis it is much easier to hit a powerful shot when we can manoeuvre our bodies into position. When we are out of position our range of movement may have to be extended to reach the ball. The transformation from eccentric to concentric is sub optimal and affects the power of the shot. The tennis player many times at end range will hit a defensive shot back, aiming to get it in the court rather than a winner! Increases in amortisation from eccentric to concentric reduces cross bridge attachment also decreasing energy return. The closer we get to and stay at end range stretching for the ball the longer we have the amortisation phase reducing the energy gained in the loading motion.

This is a very theoretical piece and mainly my own thoughts (so blame me!!) but it may give us food for thought when we programme ranges/heights for our clients to move through when training.

More may not be better in all circumstances!!!

 

This blog post is all about my wife and our upcoming baby due in September.It has been very interesting to observe my wife’s change in movement over the course of her pregnancy.

She has suffered from some pelvic pain recently, something that many women suffer from in pregnancy. It has been very obvious why, when we look at the biomechanics from a functional perspective. As we should all be aware by now our pelvises move in all three planes. As the baby house as I like to call it grows, it may rotate the pelvis to the anterior as it has done in my wife’s case. It should be noted however that some women might rotate the pelvis to the posterior due to the changes in centre of mass and the law of individuality.

The anterior rotation of the pelvis will reduce the amount of extension that can be gained in the sagittal plane. The lack of sagittal plane motion will also reduce the amount of transverse plane motion available as well. The reduced stride length in the sagittal plane will reduce the amount the pelvis can rotate over the femur. This leaves us with the frontal plane as the least compromised plane of movement. However what if the woman is not all that great moving in the frontal plane?? That maybe where problems start! I think that my wife’s problem maybe compounded by my sons love of hanging out on the left side of the womb. It is very obvious as she stands that she displaces her weight onto the right hip, maybe to act as a counterbalance for the weight of the baby on the left side. This would tighten the right hip capsule in the frontal plane. With it already limited in the sagittal and the transverse I think this spells trouble. She has complained of pain on the lateral left hip. With the right hip adducted, the adductors and medial capsular ligament will limit abduction on the right hip and therefore adduction, both rotation and translation, on the left. This will not allow the lateral abductors on the left to lengthen and may become irritated as I believe is happening. It may also compromise the SI joints on both sides and also the lumbar facet joints. Both structures rely on compression and decompression in all three planes for healthy pain free operation.

My solution to this problem has been to hit the anterior capsule on the right side. I would dearly love to hit the posterior capsule on the left but due to her size at 6 ½ months that is proving problematic.  I have then followed this up with a more dynamic strategy to restore extension/rotation/abduction on the right and adduction on the left. It seems to have made a world of difference so far but she needs to perform the stretches quite regularly to stay pain free. The movement dysfunction will not go away until late September when the baby house, fingers crossed, turns into a beautiful bouncing baby boy!!!